[1] | Deshpande N, Needles A, Willmann JK. Molecular ultrasound imaging: Current status and future directions. Clin Radiol 2010; 65:567-81. | [2] | Abou-Elkacem L, Bachawal S, Willmann J. Ultrasound molecular imaging: moving towards clinical translation. Eur J Radiol 2015; 84:1685-93. | [3] | Chong WK, Papadopoulou V, Dayton PA. Imaging with ultrasound contrast agents: current status and future. Abdom Radiol (NY) 2018; 43:762-72. | [4] | Güvener N ,Appold L,de Lorenzi F,Golombek SK,Rizzo LY,Lammers T,et al. Recent advances in ultrasound-based diagnosis and therapy with micro- and nanometer-sized formulations. Methods 2017; 130:4-13. | [5] | Wang S, Hossack JA, Klibanov AL. Targeting of microbubbles: contrast agents for ultrasound molecular imaging. J Drug Target 2018; 26:420-34. | [6] | Zlitni A, Gambhir SS. Molecular imaging agents for ultrasound. Curr Opin Chem Biol 2018; 45:113-20. | [7] | Bzyl J, Palmowski M, Rix A, Arns S, Hyvelin JM, Pochon S, et al. The high angiogenic activity in very early breast cancer enables reliable imaging with VEGFR2-targeted microbubbles (BR55). Eur Radiol 2013; 23(2):468-75. | [8] | Willmann JK, Bonomo L, Testa AC, Rinaldi P, Rindi G, Valluru KS, et al. Ultrasound molecular imaging with BR55 in patients with breast and ovarian lesions: First-in-human results. J Clin Oncol 2017; 35:2133-40. | [9] | Bachawal SV, Jensen KC, Wilson KE, Tian L, Lutz AM, Willmann JK. Breast cancer detection by B7-H3-targeted ultrasound molecular imaging. Cancer Res 2015; 75:2501-9. | [10] | Wilson KE, Bachawal SV, Abou-Elkacem L, Jensen K, Machtaler S, Tian L, et al. Spectroscopic photoacoustic molecular imaging of breast cancer using a B7-H3-targeted ICG contrast agent. Theranostics 2017; 7:1463-76. | [11] | Wilson KE, Bachawal SV, Willmann JK.Intraoperative Resection guidance with photoacoustic and fluorescence molecular imaging using an anti-B7-H3 antibody-indocyanine green dual contrast agent. Clin Cancer Res 2018; 24:3572-82. | [12] | Abou-Elkacem L, Wilson KE, Johnson SM, Chowdhury SM, Bachawal S, Hackel BJ, et al. Ultrasound molecular imaging of the breast cancer neovasculature using engineered fibronectin scaffold ligands: a novel class of targeted contrast ultrasound agent. Theranostics 2016; 6:1740-52. | [13] | Jiang Q, Hao S, Xiao X, Yao J, Ou B, Zhao Z, et al. Production and characterization of a novel long-acting Herceptin-targeted nanobubble contrast agent specific for Her-2-positive breast cancers. Breast Cancer 2016; 23:445-55. | [14] | Li J, Tian Y, Shan D, Gong A, Zeng L, Ren W, et al. Neuropeptide Y Y1 receptor-mediated biodegradable photoluminescent nanobubbles as ultrasound contrast agents for targeted breast cancer imaging. Biomaterials 2017; 116:106-117. | [15] | Du J, Li XY, Hu H, Xu L, Yang SP, Li FH. Preparation and imaging investigation of dual-targeted C3F8-filled PLGA nanobubbles as a novel ultrasound contrast agent for breast cancer. Sci Rep 2018; 8:3887. | [16] | Xu L, Du J, Wan C, Zhang Y, Xie S, Li H, et al. Ultrasound molecular imaging of breast cancer in MCF-7 orthotopic mice using gold nanoshelled poly(lactic-co-glycolic acid) nanocapsules: a novel dual-targeted ultrasound contrast agent. Int J Nanomedicine 2018; 13:1791-807. | [17] | Wischhusen J, Wilson KE, Delcros JG, Molina-Pe?a R, Gibert B, Jiang S, et al. Ultrasound molecular imaging as a non-invasive companion diagnostic for netrin-1 interference therapy in breast cancer. Theranostics 2018; 8:5126-42. | [18] | Fischer T, Thomas A, Tardy I, Schneider M, Hünigen H, Custodis P, et al. Vascular endothelial growth factor receptor 2-specific microbubbles for molecular ultrasound detection of prostate cancer in a rat model. Invest Radiol 2010; 45:675-84. | [19] | Palmowski M, Peschke P, Huppert J, Hauff P, Reinhardt M, Maurer M, et al. Molecular ultrasound imaging of early vascular response in prostate tumors irradiated with carbon ions. Neoplasia 2009; 11:856-63. | [20] | Smeenge M, Tranquart F ,Mannaerts CK, de Reijke TM, van de Vijver MJ, Laguna MP,et al. First-in-Human ultrasound molecular imaging with a VEGFR2-specific ultrasound molecular contrast agent (BR55) in prostate cancer: a safety and feasibility pilot study. Invest Radiol 2017; 52:419-27. | [21] | Fan X, Guo Y, Wang L, Xiong X, Zhu L, Fang K, et al. Diagnosis of prostate cancer using anti-PSMA aptamer A10-3.2-oriented lipid nanobubbles. Int J Nanomedicine 2016; 11:3939-50. | [22] | You Y, Liang X, Yin T, Chen M, Qiu C, Gao C, et al. Porphyrin-grafted lipid microbubbles for the enhanced efficacy of photodynamic therapy in prostate cancer through ultrasound-controlled in situ accumulation. Theranostics 2018; 8:1665-77. | [23] | Nam K, Stanczak M, Forsberg F, Liu JB, Eisenbrey JR, Solomides CC, et al. Sentinel lymph node characterization with a dual-targeted molecular ultrasound contrast agent. Mol Imaging Biol 2018; 20:221-9. | [24] | Hackl C, Schacherer D, Anders M, Wiedemann LM, Mohr A, Schlitt HJ, et al. Improved detection of preclinical colorectal liver metastases by high resolution ultrasound including molecular ultrasound imaging using the targeted contrast agent BR55. Ultraschall Med 2016; 37:290-6. | [25] | Eschbach RS, Clevert DA, Hirner-Eppeneder H, Ingrisch M, Moser M, Schuster J, et al. Contrast-Enhanced ultrasound with VEGFR2-targeted microbubbles for monitoring regorafenib therapy effects in experimental colorectal adenocarcinomas in rats with DCE-MRI and immunohistochemical validation. PLoS One 2017; 12:e0169323. | [26] | Zhou J, Wang H, Zhang H, Lutz AM, Tian L, Hristov D, et al. VEGFR2-targeted three-dimensional ultrasound imaging can predict responses to antiangiogenic therapy in preclinical models of colon cancer. Cancer Res 2016; 76:4081-9. | [27] | Wang H, Kaneko OF, Tian L, Hristov D, Willmann JK. Three-dimensional ultrasound molecular imaging of angiogenesis in colon cancer using a clinical matrix array ultrasound transducer. Invest Radiol 2015; 50:322-9. | [28] | Brückner M, Heidemann J, Nowacki TM, Cordes F, Stypmann J, Lenz P, et al. Detection and characterization of murine colitis and carcinogenesis by molecularly targeted contrast-enhanced ultrasound. World J Gastroenterol 2017; 23:2899-911. | [29] | El Kaffas A, Smith K, Pradhan P, Machtaler S ,Wang H,von Eyben R,et al. Molecular contrast-enhanced ultrasound imaging of radiation-induced P-selectin expression in healthy mice colon. Int J Radiat Oncol Biol Phys 2017; 97:581-5. | [30] | Shan R, Wang B, Wang A, Sun Z, Dong F, Liu J, et al. Endoglin-targeted contrast-enhanced ultrasound imaging in hepatoblastoma xenografts. Oncol Lett 2018; 16:3784-90. | [31] | Baron Toaldo M, Salvatore V, Marinelli S, Palamà C, Milazzo M, Croci L, et al. Use of VEGFR-2 targeted ultrasound contrast agent for the early evaluation of response to sorafenib in a mouse model of hepatocellular carcinoma. Mol Imaging Biol 2015; 17:29-37. | [32] | Wang JP, Zhou XL, Yan JP, Zheng RQ, Wang W. Nanobubbles as ultrasound contrast agent for facilitating small cell lung cancer imaging. Oncotarget 2017; 8:78153-62. | [33] | Tummers WS, Willmann JK, Bonsing BA, Vahrmeijer AL, Gambhir SS, Swijnenburg RJ. Advances in diagnostic and intraoperative molecular imaging of pancreatic cancer. Pancreas 2018; 47:675-89. | [34] | Abou-Elkacem L, Wang H, Chowdhury SM, Kimura RH, Bachawal SV, Gambhir SS, et al. Thy1-targeted microbubbles for ultrasound molecular imaging of pancreatic ductal adenocarcinoma. Clin Cancer Res 2018; 24:1574-85. | [35] | Liu C, Yan F, Xu Y, Zheng H, Sun L. In vivo molecular ultrasound assessment of glioblastoma neovasculature with Endoglin-targeted microbubbles. Contrast Media Mol Imaging 2018; 2018: 8425495. | [36] | Yang H, Zhou T, Cai W, Yi X, Liu X, Wang Y, et al. Novel dual-mode nanobubbles as potential targeted contrast agents for female tumors exploration. Tumour Biol 2016; 37:14153-63. | [37] | Gao Y, Hernandez C, Yuan HX, Lilly J, Kota P, Zhou H, et al. Ultrasound molecular imaging of ovarian cancer with CA-125 targeted nanobubble contrast agents. Nanomedicine 2017; 13:2159-68. | [38] | Sciallero C, Daglio E, Trucco A.In vivo quantification of ultrasound targeted microbubbles to enhance cancer assessment. Contrast Media Mol Imaging 2016; 11:313-18. | [39] | Zhang H, Ingham ES, Gagnon MK, Mahakian LM, Liu J, Foiret JL, et al. In vitro characterization and in vivo ultrasound molecular imaging of nucleolin-targeted microbubbles. Biomaterials 2017; 118:63-73. | [40] | Zhou T, Cai W, Yang H, Zhang H, Hao M, Yuan L, et al. Annexin V conjugated nanobubbles: A novel ultrasound contrast agent for in vivo assessment of the apoptotic response in cancer therapy. J Control Release 2018; 276:113-24. | [41] | Eisenbrey JR, Forsberg F. Contrast-enhanced ultrasound for molecular imaging of angiogenesis. Eur J Nucl Med Mol Imaging 2010; 37 Suppl 1: S138-46. | [42] | Wang J, Qin B, Chen X, Wagner WR, Villanueva FS. Ultrasound molecular imaging of angiogenesis using vascular endothelial growth factor-conjugated microbubbles. Mol Pharm 2017; 14:781-90. | [43] | Daeichin V, Kooiman K, Skachkov I, Bosch JG, Theelen TL, Steiger K, et al. Quantification of endothelial αvβ3 expression with high-frequency ultrasound and targeted microbubbles: in vitro and in vivo studies. Ultrasound Med Biol 2016; 42:2283-93. | [44] | Yan F, Xu X, Chen Y, Deng Z, Liu H, Xu J, et al. A Lipopeptide-Based α v β Integrin-targeted ultrasound contrast agent for molecular imaging of tumor angiogenesis. Ultrasound Med Biol. 2015; 41:2765-73. | [45] | Otani K, Nishimura H, Kamiya A, Harada-ShibaM. Simplified preparation of αvβ3 Integrin-targeted microbubbles based on a clinically available ultrasound contrast agent: validation in a tumor-bearing mouse model. Ultrasound Med Biol 2018; 44:1063-73. | [46] | Hu Q, Wang XY, Kang LK, Wei HM, Xu CM, Wang T, et al. RGD-targeted ultrasound contrast agent for longitudinal assessment of Hep-2 tumor angiogenesis in vivo. PLoS One 2016; 11:e0149075. | [47] | Payen T, Dizeux A, Baldini C ,Le Guillou-Buffello D, Lamuraglia M, Comperat E, et al. VEGFR2-targeted contrast-enhanced ultrasound to distinguish between two anti-angiogenic treatments. Ultrasound Med Biol 2015; 41:2202-11. | [48] | Zhang H, Tam S, Ingham ES, Mahakian LM, Lai CY, Tumbale SK, et al. Ultrasound molecular imaging of tumor angiogenesis with a neuropilin-1-targeted microbubble. Biomaterials 2015; 56:104-13. | [49] | Maier A, Plaza-Heck P, Meixner F, Guenther F, Kaufmann BA, Kramer M, et al. A molecular intravascular ultrasound contrast agent allows detection of activated platelets on the surface of symptomatic human plaques. Atherosclerosis 2017; 267:68-77. | [50] | Guo S, Shen S, Wang J, Wang H, Li M, Liu Y, et al. Detection of high-risk atherosclerotic plaques with ultrasound molecular imaging of glycoprotein IIb/IIIa receptor on activated platelets. Theranostics 2015; 5:418-30. | [51] | Metzger K, Vogel S, Chatterjee M, Borst O, Seizer P, Sch?nberger T, et al. High-frequency ultrasound-guided disruption of glycoprotein VI-targeted microbubbles targets atheroprogressison in mice. Biomaterials 2015; 36:80-9. | [52] | Sun R, Tian J, Zhang J, Wang L, Guo J, Liu Y. Monitoring inflammation injuries in the progression of atherosclerosis with contrast enhanced ultrasound molecular imaging. Plos One 2017; 12:e0186155. | [53] | Moccetti F, Weinkauf CC, Davidson BP, Belcik JT, Marinelli ER, Unger E, et al. Ultrasound molecular imaging of atherosclerosis using small-peptide targeting ligands against endothelial markers of inflammation and oxidative stress. Ultrasound Med Biol 2018; 44:1155-63. | [54] | Weinkauf CC, Concha-Moore K, Lindner JR, Marinelli ER, Hadinger KP, Bhattacharjee S, et al. Endothelial vascular cell adhesion molecule 1 is a marker for high-risk carotid plaques and target for ultrasound molecular imaging. J Vasc Surg 2018; 68:105S-13S. | [55] | Curaj A, Wu Z, Rix A, Gresch O, Sternkopf M, Alampour-Rajabi S, et al. Molecular ultrasound imaging of junctional adhesion molecule a depicts acute alterations in blood flow and early endothelial dysregulation. Arterioscler Thromb Vasc Biol 2018; 38:40-8. | [56] | Atkinson T, Packwood W, Xie A, Liang S, Qi Y, Ruggeri Z, et al. Assessment of novel antioxidant therapy in atherosclerosis by contrast ultrasound molecular imaging. J Am Soc Echocardiogr. 2018; 31:1252-9. | [57] | Rix A, Fokong S, Heringer S, Pjontek R, Kabelitz L, Theek B, et al. Molecular ultrasound imaging of αvβ3-Integrin expression in carotid arteries of pigs after vessel injury. Invest Radiol 2016; 51:767-75. | [58] | Wang S, Unnikrishnan S, Herbst EB, Klibanov AL, Mauldin FW Jr, Hossack JA. Ultrasound molecular imaging of inflammation in mouse abdominal aorta. Invest Radiol 2017; 52:499-506. | [59] | Wu W, Feng X, Yuan Y, Liu Y, Li M, Bin J, et al. Comparison of magnetic microbubbles and dual-modified microbubbles targeted to P-selectin for imaging of acute endothelial inflammation in the abdominal aorta. Mol Imaging Biol 2017; 19:183-93. | [60] | Leng X, Wang J, Carson A, Chen X, Fu H, Ottoboni S, et al. Ultrasound detection of myocardial ischemic memory using an E-selectin targeting peptide amenable to human application. Mol Imaging 2014; 13:1-9. | [61] | Steinl DC, Xu L, Khanicheh E, Ellertsdottir E, Ochoa-Espinosa A, Mitterhuber M, et al. Noninvasive contrast-enhanced ultrasound molecular imaging detects myocardial inflammatory response in autoimmune myocarditis. Circ Cardiovasc Imaging 2016;9. pii: e004720. | [62] | Lux J, Vezeridis AM, Hoyt K, Adams SR, Armstrong AM, Sirsi SR, et al. Thrombin-activatable microbubbles as potential ultrasound contrast agents for the detection of acute thrombosis. ACS Appl Mater Interfaces 2017; 9:37587-96. | [63] | Hoyt K, Warram JM, Wang D, Ratnayaka S, Traylor A, Agarwal A. Molecular ultrasound imaging of tissue inflammation using an animal model of acute kidney injury. Mol Imaging Biol 2015; 17:786-92. | [64] | Rojas JD, Lin F, Chiang YC, Chytil A, Chong DC, Bautch VL, et al. Ultrasound molecular imaging of VEGFR-2 in clear-cell renal cell carcinoma tracks disease response to antiangiogenic and notch-inhibition therapy. Theranostics 2018; 8:141-55. | [65] | Xuan J, Chen Y, Zhu L, Guo Y, Deng L, Zheng Y, et al. Ultrasound molecular imaging with cRGD-PLGA-PFOB nanoparticles for liver fibrosis staging in a rat model. Oncotarget 2017; 8:108676-91. | [66] | Qiu C, Yin T, Zhang Y, Lian Y, You Y, Wang K, et al. Ultrasound imaging based on molecular targeting for quantitative evaluation of hepatic ischemia-reperfusion injury. Am J Transplant 2017; 17:3087-97. | [67] | Xie F, Li ZP, Wang HW, Fei X, Jiao ZY, Tang WB, et al. Evaluation of liver ischemia-reperfusion injury in rabbits using a nanoscale ultrasound contrast agent targeting ICAM-1. PLoS One 2016; 11:e0153805. | [68] | Kiessling I, Bzyl J, Kiessling F. Molecular ultrasound imaging and its potential for paediatric radiology. Pediatr Radiol 2011; 41:176-84. | [69] | Wu M, Zhao H, Guo L, Wang Y, Song J, Zhao X, et al. Ultrasound-mediated nanobubble destruction (UMND) facilitates the delivery of A10-3.2 aptamer targeted and siRNA-loaded cationic nanobubbles for therapy of prostate cancer. Drug Deliv 2018; 25:226-40. | [70] | Wu M, Wang Y, Wang Y, Zhang M, Luo Y, Tang J, et al. Paclitaxel-loaded and A10-3.2 aptamer-targeted poly(lactide-co-glycolic acid) nanobubbles for ultrasound imaging and therapy of prostate cancer. Int J Nanomedicine 2017; 12:5313-30. | [71] | Luo W, Wen G, Yang L, Tang J, Wang J, Wang J, et al. Dual-targeted and pH-sensitive Doxorubicin Prodrug-Microbubble Complex with Ultrasound for Tumor Treatment. Theranostics 2017; 7:452-65. | [72] | Chang EL, Ting CY, Hsu PH, Lin YC, Liao EC, Huang CY, et al. Angiogenesis-targeting microbubbles combined with ultrasound-mediated gene therapy in brain tumors. J Control Release 2017; 255:164-75. | [73] | Yang C, Li B, Yu J, Yang F, Cai K, Chen Z. Ultrasound microbubbles mediated miR-let-7b delivery into CD133+ ovarian cancer stem cells. Biosci Rep 2018; 38.pii: BSR20180922. | [74] | Yue T, Xu HL, Chen PP, Zheng L, Huang Q, Sheng WS, et al. Combination of coenzyme Q10-loaded liposomes with ultrasound targeted microbubbles destruction (UTMD) for early theranostics of diabetic nephropathy. Int J Pharm 2017; 528:664-74. | [75] | Tlaxca JL, Rychak JJ, Ernst PB, Konkalmatt PR, Shevchenko TI, Pizarro TT, et al. Ultrasound-based molecular imaging and specific gene delivery to mesenteric vasculature by endothelial adhesion molecule targeted microbubbles in a mouse model of Crohn's disease. J Control Release 2013; 165:216-25. |
|